Exercise 54

Let $f(x)=\llbracket x \rrbracket+\llbracket-x \rrbracket$.
(a) For what values of a does $\lim _{x \rightarrow a} f(x)$ exist?
(b) At what numbers is f discontinuous?

Solution

Below are the graphs of $\llbracket x \rrbracket$ and $\llbracket-x \rrbracket$ superimposed.

With this, the graph of $f(x)$ can be drawn.

Part (a)

$\lim _{x \rightarrow a} f(x)$ exists at all values of a because the left-hand and right-hand limits are equal everywhere:

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=-1 .
$$

Part (b)

f is discontinuous at all numbers that are integers,

$$
x=n, \quad n=0, \pm 1, \pm 2, \ldots,
$$

because

$$
-1=\lim _{x \rightarrow n} f(x) \neq f(n)=0
$$

